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Abstract

Skin cancer is a prevalent and concerning form of can-
cer, with an annual incidence rate estimated to be more than
3 million cases in the US. In recent years, the field of medi-
cal image processing has made a remarkable progress in the
domain of skin cancer detection, surpassing the diagnos-
tic capabilities of dermatologists in certain settings. How-
ever, it has been reported that the performance of these deep
learning detection models varies significantly across differ-
ent skin tones (e.g., light versus dark), motivating the need
for fair and unbiased classification results. Here, we evalu-
ate DeepDerm [10], a state-of-the-art skin cancer detection
model, specifically focusing on its performance across skin
types classified by the Fitzpatrick Skin Tones (FST). By an-
alyzing the model’s accuracy and fairness, we observe no-
table discrepancies in its performance across different FST
categories. We propose a novel architecture that leverages
fine-tuning, an ensemble architecture, and fairness-based
resampling for supporting high accuracy and fairness in
skin cancer detection. The proposed framework demon-
strates promising outcomes, marking a significant stride
toward achieving fairness and accuracy in dermatological
image processing.

1. Introduction

Multimedia processing is rapidly impacting the health-

care industry, enabling a variety of health-related and med-

ical diagnostic applications to enhance healthcare. These

applications include chest X-ray diagnosis [9], brain MRI

segmentation [15], and skin cancer detection [11, 18]. In

*Equal Contribution

particular, skin cancer detection is one of the crucial appli-

cations that can benefit from multimedia processing, as it

can reduce the reliance on human experts, improve the ac-

curacy performance, and facilitate the sharing of informa-

tion. With an estimated annual incidence rate of more than

3 million cases in the US, skin cancer is a common and

alarming form of cancer [5]. Early detection and diagnosis

are crucial for improving the survival rate and reducing the

treatment costs of this disease. However, the availability

and accessibility of dermatologists are limited, especially

for vulnerable populations and in rural areas. Therefore,

there is a growing demand for automated and reliable meth-

ods for skin cancer detection using digital images.

However, building accurate and robust deep learning

models for skin cancer detection requires large and diverse

datasets, which are often scarce or private in the field of

medical imaging. A common solution to this challenge is

to use transfer learning, which allows adapting the structure

and parameters of pre-trained models on different domains

(e.g., GoogleNet-Inception-V3 [24]) to the specific task of

skin cancer detection. Yet, transfer learning alone may not

be sufficient to ensure high performance and generalization

across different subgroups of patients, as it may introduce

biases and disparities that affect the fairness and inclusive-

ness of the system. For instance, it has been reported that

some deep learning models for skin cancer detection exhibit

unfair behaviors towards minority or disadvantaged groups

(e.g., female, black, etc.) if not carefully diagnosed and

constrained [10, 1].

In this paper, we address the problem of building an ac-

curate and fair model for skin cancer detection using multi-

media processing. We follow the transfer learning approach

to fine-tune a state-of-the-art model, DeepDerm [10], on a

large and diverse dataset of skin images, combining two ex-
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isting benchmarks from the field of skin dermatology: DDI

and Fitzpatrick17k datasets [10], [17]. We evaluate the per-

formance and fairness of DeepDerm on different subgroups

of patients, classified by their Fitzpatrick Skin Tones (FST)

[14]. The FST is a widely used scale that categorizes hu-

man skin tone into six types, ranging from very light (FST

I) to very dark (FST VI). Following [10], we analyze the

accuracy and fairness performance of DeepDerm on dif-

ferent FST groups (FST I-II and FST V-VI), and we ob-

serve notable discrepancies in its performance. We find that

DeepDerm tends to favor lighter skin tones (FST I-II) over

darker ones (FST V-VI), resulting in higher false positives

and lower true positives for the latter group. This implies

that DeepDerm may misdiagnose or miss malignant lesions

in patients with darker skin tones, potentially leading to ad-

verse health outcomes and reduced trust in the system.

To overcome this limitation, we propose a novel

SAFE (Skin cancer detection with Adaptive Fairness-aware

Ensemble) framework that aims to improve both the accu-

racy and fairness of skin cancer detection across skin tones.

Our framework consists of three main components: (1) fine-

tuning, (2) ensemble architecture, and (3) fairness-based re-

sampling. First, we fine-tune DeepDerm on a subset of im-

ages from different FST categories separately, creating spe-

cialized models that are more tailored to the specific charac-

teristics of each skin tone. Second, we combine these spe-

cialized models into an ensemble architecture that leverages

their complementary strengths and reduces their individual

weaknesses. Third, we apply a fairness-based resampling

technique that balances the distribution of skin tones in the

training data, mitigating the effects of data imbalance and

underrepresentation. We evaluate our framework by com-

paring the performance and fairness metrics on different

FST based groups. We report that our framework achieves

notable improvements over DeepDerm, and its full layers

fine-tuned version in both aspects, demonstrating its effec-

tiveness and robustness for fair and accurate skin cancer de-

tection.

The main contributions of this paper are:

(1) To audit the performance and fairness of DeepDerm,

a state-of-the-art skin cancer detection model, across dif-

ferent skin tones classified by the FST using a custom-

aggregated large, diverse dataset.

(2) To propose a novel SAFE framework that leverages

fine-tuning, ensemble architecture, and fairness-based re-

sampling for improving both the accuracy and fairness of

skin cancer detection across skin tones.

This work contributes to the growing literature on the

need for fairness in multimedia processing algorithms [22,

2]. Such bias has been reported in tasks such as face

matching, cyberbullying detection, and pedestrian detec-

tion [8, 2, 7]. Similarly, several bias reduction techniques

have been proposed that include building fairness-centric

adversarial networks [2], reweighing multimodal features

[3], reweighing and combining multiple model outputs [4],

or creating new mid-level representations that maintain high

prediction accuracy but minimize the correlation with sen-

sitive/demographic attributes [6]. In this work, we use a

combination of fine-tuning, adaptive reweighing and en-

sembling.

Transfer learning is increasingly being used for derma-

tological image processing [13, 10]. Esteva et al., showed

that such an approach, called DeepDerm (fine-tuned from

Google-Inception-v3 CNN architecture pre-trained on the

ImageNet dataset) can outperform human dermatologists in

certain settings [13]. However, Daneshjou et al., showed

that when tested over a Diverse Dermatological Images

(DDI) dataset, DeepDerm yielded modest accuracy and sig-

nificant differences in performance for different skin tones.

They further showed that another round of fine-tuning over

such diverse images helped with improving the fairness and

accuracy. However, the DDI dataset was small (e.g., only

48 images for the malignant category for dark skin) and this

could be a limiting factor in the validity, accuracy, and fair-

ness of their approach. Hence, in this work, we complement

DDI dataset with another similar dataset (Fitzpatrick17k),

and propose a SAFE approach for fairness and robustness

in dermatological image processing.

2. Methodology

2.1 Problem Formulation

We consider a dataset {(xi, ai, yi)} that has n sam-

ples. Each sample consists of an image (x), a sensitive

attribute (a) and a target label (y). A sensitive attribute

is a binary random variable where a can take values of

{a+, a−} which represents advantaged and disadvantaged
demographic group, respectively. The definition of advan-

taged group depends on the societal context and can include

aspects like race, gender, skin tone, age, etc. [19]. Here,

we consider skin tone as the sensitive attribute. Similarly

the target label is y = {y+, y−}, where +, (-) represents

positive class (negative class), respectively. In this work,

we consider x as a photographed skin image, a is a binary

value of whether an image belongs to a light (FST I-II)/dark

(FST V-VI) skin tone [17]. Lastly, y represents the presence

of cancer or not (i.e., benign versus malignant). The predic-

tion algorithm f will map x to y, i.e., f : x → y.

In such a setting our goal is to maximize two factors:

(i) prediction correctness, and (ii) prediction fairness. We

use four different metrics to quantify correctness: accu-

racy, area under the ROC curve (AUROC), true positive

rate (TPR) and false positive rate (FPR). Consequently,

following extant literature on group fairness metrics [20],

we examine the disparity (i.e., Δ) of the aforementioned
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metrics performance on the two groups (e.g., ΔTPR =
|TPRFST (I−II) − TPRFST (V−V I)|) to quantify fairness.

In effect, we quantify fairness as the lack of disparity in al-

gorithm’s performance based on the sensitive attribute [19].

These accuracy and fairness metrics are not collapsible

into a single score and may even be impossible to opti-

mize at the same time [21] and we will look for trends in

their values when comparing models. Specifically, we pre-

fer models that score high (↑) on accuracy, AUROC, and

TPR, while scoring low (↓) on FPR, Δaccuracy , ΔAUROC ,

ΔTPR, ΔFPR.

Dataset Label Sensitive # Label

FST I-II FST V-VI

DDI
Benign 159 145 304

Malignant 49 48 97

# Sensitive 208 193

Fitzpatrik17K
Benign 359 77 436

Malignant 775 181 956

# Sensitive 1134 258

Combined
Benign 518 222 740

Malignant 824 229 1053

# Sensitive 1342 451

Table 1. Datasets Summary

2.2 Datasets

In this paper, we use two datasets, Diverse Dermatology
Images (DDI) [10] and Fitzpatrick17k [17]. Both datasets

are free for scientific, non-commercial use. DDI is a clin-

ically curated and pathologically confirmed image dataset

with diverse skin tones. The dataset is a compilation of

benign and malignant lesions diagnosed in Stanford clinics

between 2010 to 2020, which were reviewed histopatholog-

ically. The dataset consists of 656 images representing 570

unique patients [10]. For each image, the Fitzpatrick Skin

Type (FST) was identified. The Fitzpatrick scale is a nu-

merical classification schema for human skin tone. It ranges

from I to VI and is a way to estimate the response of differ-

ent types of skin to ultraviolet light (UV) [16, 17]. FST I-II

represents light skin tones and FST V-VI represents dark

skin tones while FST III-IV represents a class which lies in-

between [17]. For this study, we focus on FST I-II and FST

V-VI images. The unique positive aspect of the DDI dataset

is the balance between number of samples of different skin

tones. A major challenge is the small sample size, espe-

cially for the malignant class. The Fitzpatrick17k dataset

consists of 16,577 images which have been collected from

two dermatological atlases - DermaAmin and Atlas Derma-

tological - and the labels were assigned via open-source an-

notation platforms [17]. Similar to DDI, we focus on FST

I-II and FST V-VI images. To maintain consistency, we pick

diseases from Fitzpatrick17k which are common with DDI.

As the dataset summary shows in Table 1, we can see the

DDI dataset is small but relatively balanced for the sensi-

tive attribute and the class label whereas the Fitzpatrick17k

is larger but shows an imbalance behavior. Hence, we have

decided to combine these two sources into a ‘combined

dataset’ for the purpose of this study.

Figure 1. The Proposed SAFE Framework

2.3 Pre-Processing

Most of the images were originally cropped as part of de-

identification. However, some images still contained back-

ground which needed to be removed, therefore all of the

images were center-cropped. We have followed a 60-20-

20 split for training, validation and testing. The training

set was further transformed with random rotations, verti-

cal flips, Gaussian blurring and color jitters. Furthermore,

all splits have been normalized for model generalizability.

During training we make use of mixup data augmentation

with an alpha value of 0.2 [25]. Mixup data augmentation

is used to augment training data by blending pairs of in-

puts and their corresponding labels to create virtual sam-

ples. This encourages a model to learn more robust and

generalizable representations by exposing it to various com-

binations of features and labels.

2.4 Proposed Approach

In the proposed approach, we use DeepDerm as the start-

ing point and undertake fine-tuning on it before creating an

ensemble where reweighing is adopted to support fairness

and accuracy. Thus, DeepDerm and full-layers fine-tuning

work as baselines as well as conceptual building blocks for

the proposed approach.

2.4.1 DeepDerm (Baseline 1)

DeepDerm uses Inception-V3 model architecture [24].

Inception-V3 consists of 42 layers and is known to be com-

putationally efficient compared to its predecessors. While

most models struggle to estimate the correct kernel size,

Inception-V3 tries multiple kernels of different dimensions
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Method Metrics All I-II V-VI Δ ↓

DeepDerm (Baseline)

Accuracy (%) ↑ 78.60 79.93 75.00 4.93

AUROC (%) ↑ 85.90 87.21 82.33 4.88

TPR (%) ↑ 83.80 84.24 82.61 1.63
FPR (%) ↓ 28.60 26.92 32.61 5.69

Full-Layers (Fine-Tuning)

Accuracy (%) ↑ 77.84 ±1.00 77.94 ±0.86 77.54 ±5.14 4.06 ±2.93

AUROC (%) ↑ 85.93 ±1.80 86.26 ±1.88 84.58 ±2.49 2.10 ±1.48

TPR (%) ↑ 84.68 ±4.30 87.27 ±5.78 75.36 ±9.05 11.91 ±12.23

FPR (%) ↓ 31.78 ±6.16 36.86 ±6.96 20.29 ±4.53 16.57 ±2.99

SAFE (Proposed)

Accuracy (%) ↑ 85.13 ±0.16 85.87±0.37 82.97±0.63 2.90±0.97

AUROC (%) ↑ 91.80±1.00 91.98±1.49 90.94±1.13 2.21±0.96

TPR (%) ↑ 87.36±0.27 88.48±0.00 83.33±1.26 5.15±1.26

FPR (%) ↓ 18.00±0.67 18.27±0.96 17.39±0.00 0.93±0.88

Table 2. Performance of different models across different evaluation metrics. All indicates the full
test set performance, I-II indicates the test set performance only for lighter skin subgroup and V-IV
indicates the test set performance for the darker skin subgroup. Δ represents the absolute value of
performance differences of (I-II and V-VI) subgroups for that metric. Values shown are the mean and
the standard deviations of 3 different runs.

and concatenates the output. We use a pre-trained model

provided by [13, 10]. We fine-tune our models using the

SGD optimizer with the learning rate of 0.005 and a weight

decay of 0.0001, and train for 200 epochs. We use the vali-

dation data to pick the best model during training.

2.4.2 Full-Layers Fine-Tuning (Baseline 2)

Since DeepDerm has been pre-trained on a different bench-

marking dataset than ours, we follow [10] to apply the trans-

fer learning approach by fine-tuning all-layers of DeepDerm

architecture based on our combined dataset. Specifically,

we keep the same architecture but update the model param-

eters based on the training of our dataset. This is similar

to the approach adopted by [10] to reduce skin tone based

disparities in DeepDerm.

2.4.3 SAFE (Skin cancer detection with Adaptive
Fairness-aware Ensemble) Model

In this work, we adopt an ensemble approach with the aim

of achieving both fairness and accuracy in cancer image de-

tection. In a well-constructed ensemble model, each indi-

vidual model should make predictions based on different

aspects of the data or different algorithms, so that the en-

semble can produce a more comprehensive and accurate

prediction.

Here, we build upon the “decoupled classifiers for fair-

ness” approach [12], to train (i.e., fine-tune all layers) two

different DeepDerm models - one model on the FST I-II

data and one model on the FST V-VI data - and then com-

bine the models within an ensemble framework. The en-

semble framework is summarized in Figure 1. It consists of

two stages: (1) Individual Fine-Tuning and (2) A Fair En-

semble. To train a fair ensemble network, having separate

fine-tuned models might not suffice, especially when the

training dataset suffers from a significant imbalance with

respect to both the sensitive attribute and the label as shown

in Table 1. Therefore, to further support fairness and ac-

curacy, we train the ensemble to ensure that the ratio of

sensitive attribute (light/dark skin) and disease labels (be-

nign/malignant) is equalized during the training process.

Specifically, it will weight each sample proportionally to

the inverse of its class/sensitive attributes frequency. There-

fore, minority samples (i.e., benign or dark skin) will be

resampled more frequently compared to the majority. Note

that the ratio of the samples and labels for the test data is not

altered. The intuition behind this idea is to first specialize
disease classification for skin tone and then generalize the

results across skin tones by training the ensemble weights.

In such a scenario, the ensemble framework will likely be

exposed to each subgroup equally during re-training; thus

getting equal opportunity to learn about classifying skin dis-

eases for the considered subgroups.

3 Results and Discussion

3.1 Fairness Audit Across Skin Tones in Derma-
tological Image Processing

As a first step, we check if the existing DeepDerm al-

gorithm exhibits algorithmic bias. In other words, does it

yield statistically significant differences in its performance
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Method Metrics All I-II V-VI Δ ↓

Ensemble (Vanilla)

Accuracy (%) ↑ 85.23 ±0.16 85.87 ±0.37 83.33 ±0.63 2.54 ±0.97

AUROC (%) ↑ 86.16 ±10.15 87.65 ±8.43 80.69 ±16.25 6.96 ±8.04

TPR (%) ↑ 87.99 ±0.27 89.09 ±0.61 84.06 ±1.26 5.03 ±1.81

FPR (%) ↓ 18.67 ±0.00 19.23±0.00 17.39±0.00 1.84 ±0.00

Ensemble (Label)

Accuracy (%) ↑ 85.41 ±0.32 86.00 ±0.43 83.70 ±0.00 2.30 ±0.43

AUROC (%) ↑ 89.96 ±3.48 89.75±4.87 90.50±0.11 3.15±3.91

TPR (%) ↑ 88.47±0.27 89.49±0.35 84.78±0.00 4.71±0.35

FPR (%) ↓ 18.89±0.38 19.55±0.56 17.39±0.00 2.16±0.56

Ensemble (Sensitive)

Accuracy (%) ↑ 85.32±0.28 85.87±0.37 83.70±0.00 2.18±0.37
AUROC (%) ↑ 92.44±0.04 93.16±0.04 89.32±0.08 3.84±0.05

TPR (%) ↑ 88.15±0.47 89.09±0.61 84.78±0.00 4.31±0.61
FPR (%) ↓ 18.67±0.00 19.23±0.00 17.39±0.00 1.84±0.00

SAFE (Proposed)

Accuracy (%) ↑ 85.13 ±0.16 85.87±0.37 82.97±0.63 2.90±0.97

AUROC (%) ↑ 91.80±1.00 91.98±1.49 90.94±1.13 2.21±0.96
TPR (%) ↑ 87.36±0.27 88.48±0.00 83.33±1.26 5.15±1.26

FPR (%) ↓ 18.00±0.67 18.27±0.96 17.39±0.00 0.93±0.88

Table 3. Ablation Study: Performance for different variants/components of the proposed approach.

for groups that have lighter and darker skin tones. To test the

hypothesis that the DeepDerm has a significant bias treating

different skin tones differently, we use a t-test that compares

the means for the two subgroups. To do so, for each sub-

group we randomly and independently subsample 50 im-

ages and examine the DeepDerm average performance on

each sample. Repeating the process 30 times, we use a sig-

nificance level α = 0.05 to test the null hypothesis. For

comparisons made in terms of each of the four performance

metrics, we found that the p-value for the t-test is less than

0.05 (Accuracy: p < .001, AUROC: p < .001, TPR:

p < .015 and FPR: p < .020) and the performance was

better for the lighter skinned group than the darker skinned

group. Hence, the results indicate that there is a signifi-
cant difference in the performance of the DeepDerm clas-

sifier for different skin tones. This is consistent with the

results reported by Daneshjou et al. [10] on the perfor-

mance of DeepDerm across skin tones. It is also consistent

with other recent results which have reported difference in

performance of image processing algorithms based on skin

tone [8, 18], and motivate the need for approaches to in-

crease fairness across skin tones in image processing and

multimedia applications.

3.2 Accuracy and Fairness Performance of the
Proposed Approach

Next, we examine the performance of the DeepDerm

model, the fine-tuning model, and the SAFE ensemble

model on the whole test set and on (FST I-II, FST V-VI)

subsets. For each model, we compare the performance

based on the aforementioned four metrics and the difference

in those metrics for samples belonging to the two different

skin tones considered (FST I-II versus FST V-VI). The re-

sults (see Table 2) for each approach are based on the same

test set. For Full-Layers and the proposed SAFE model, the

results are an average across three runs, where each run had

a different selection of training and validation sets. Since,

no training/validation is done for DeepDerm (Baseline), it’s

results are reported on a single test set run.

In Table 2, we can see the baseline has a moderate over-

all accuracy (78.60%) and tends to perform well for lighter

skin tone compared to the dark skin tone (79.93% versus

75.00%). The same trend is persistent with AUROC as well.

Additionally, the ΔTPR is the lowest for the DeepDerm

(Baseline) but the ΔFPR is relatively high in which the dark

skin patients have the highest false positive rates. The trans-

fer learning approach, namely, Full-Layers (Fine-Tuning)

has helped in reducing the disparity between the two groups

in terms of ΔAUROC . However, it performs worse than

the baseline in terms of overall accuracy, FPR, ΔTPR and

ΔFPR. The proposed SAFE framework yields the best

performance in terms of all four accuracy/correctness met-

rics for each of the demographic groups considered and the

overall dataset. It also yields the best performance in terms

of fairness metrics for Δaccuracy and ΔFPR. In all, for 14

of the 16 considered scores, the proposed approach outper-

formed the DeepDerm (Baseline) and the Full-Layers (Fine-

Tuning) approach.

These results are also visualized in Figure 2. As a trend,

we note that the proposed approach yields low bias (inverse

of fairness) scores (Figure 2a). In Figure 2b, we see that

if we were to consider a trade-off between overall AUROC

and ΔFPR, then the proposed approach will strictly domi-

nate the other two baselines. If, instead, we consider a trade-

off between overall AUROC and ΔTPR then the proposed
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(a) Proposed v.s. (baseline & fine-tuning) (b) All-AUROC versus ΔFPR (c) All-AUROC versus ΔTPR

Figure 2. Models performance for DeepDerm (Baseline), Full-Layers (Fine-Tuning) and the proposed
method. (a) shows the disparity bar plot performance for each model in which the lower the bar the
fairer the model is. (b) and (c) plot the trade-off performance of the overall AUROC in y-axis and the
ΔFPR and ΔTPR in the x-axis where a circle represents the average and an errorbar is the standard
deviation (See Table 2). The closer the model to the top-left corner the more accurate and fair.

approach will lie on a pareto curve [4] with baseline and

dominate the Full-layers fine-tuning approach.

3.3 Ablation Study for the Proposed Approach

Our proposed approach has three important components:

(a) ensembling two decoupled models, (b) reweighted train-

ing based on equal opportunities for the disease labels (be-

nign/malignant), and (c) reweighted training based on the

demographic groups.

To evaluate the relative impact of each of these steps on

the overall output, we undertake an ablation study and re-

port the results in Table 3. (The best results are highlighted

in bold). The Vanilla Ensemble refers to the approach where

the ensemble is retrained on the entire training dataset, En-

semble (Label) includes reweighing only based on labels,

and Ensemble (Sensitive) includes reweighing only based

on the sensitive attribute. We note that while the Vanilla

Ensemble improves upon the results obtained with base-

line and Full-Layers fine tuning, it falls short of the perfor-

mance obtained via the reweighing based approaches. The

label based reweighing approach yields the best correctness

scores in terms of accuracy and TPR but does not seem to

outperform others in terms of fairness. This is consistent

with past literature that has suggested reweighing based on

the classification label largely as a way to improve the ac-

curacy without necessarily considering the fairness aspect

[23]. The sensitive attribute based reweighing approach on

the other hand focuses on the fairness aspect and outper-

forms the label based reweighing approach on most of the

fairness metrics. The proposed approach reweighs based

on both labels and the sensitive attribute and can be seen

as trying to maximize a combination of fairness and accu-

racy based metrics. It’s results are approaching the accuracy

scores of the label and sensitive attribute reweighing, while

also yielding the best fairness scores in terms of ΔAUROC

and ΔFPR. It also yields the lowest overall bias in terms

of an aggregated sum of the Δ scores for the four fairness

metrics. This suggests that each of the components of the

proposed approach has an important (albeit different) role

to play in supporting its fairness and accuracy goals.

4. Conclusion and Future Work

This paper adds to a small number of attempts at audit-

ing image processing algorithms for skin tone based bias

in cancer detection. It does so using multiple datasets and

the state-of-the-art DeepDerm model [10]. Specifically,

it finds that the fine-tuning based approach proposed by

Daneshjou et al., [10] has limitations in terms of the fair-

ness and accuracy levels achieved. This could in part be a

function of the small sample size used. This work proposes

a new SAFE (Skin cancer detection with Adaptive Fairness-

aware Ensemble) approach that utilizes decoupled learning,

ensembling, and fairness aware reweighing, to yield high

performance in terms of both fairness and accuracy. The

empirical results demonstrate the validity of the proposed

ideas. Future work in this area could include more diverse

datasets, more sophisticated multimedia processing, and de-

vising more sophisticated bias mitigation strategies. How-

ever, the proposed approach marks an important step toward

achieving fairness and accuracy in dermatological image

processing.
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[15] S. Gassenmaier, T. Küstner, D. Nickel, J. Herrmann,

R. Hoffmann, H. Almansour, S. Afat, K. Nikolaou, and

A. E. Othman. Deep learning applications in magnetic reso-

nance imaging: has the future become present? Diagnostics,

11(12):2181, 2021.
[16] M. Groh, C. Harris, R. Daneshjou, O. Badri, and

A. Koochek. Towards transparency in dermatology image

datasets with skin tone annotations by experts, crowds, and

an algorithm. arXiv preprint arXiv:2207.02942, 2022.
[17] M. Groh, C. Harris, L. Soenksen, F. Lau, R. Han, A. Kim,

A. Koochek, and O. Badri. Evaluating deep neural net-

works trained on clinical images in dermatology with the

fitzpatrick 17k dataset. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition,

pages 1820–1828, 2021.
[18] N. M. Kinyanjui, T. Odonga, C. Cintas, N. C. Codella,

R. Panda, P. Sattigeri, and K. R. Varshney. Fairness of clas-

sifiers across skin tones in dermatology. In Medical Image
Computing and Computer Assisted Intervention–MICCAI
2020: 23rd International Conference, Lima, Peru, October
4–8, 2020, Proceedings, Part VI, pages 320–329. Springer,

2020.
[19] B. Lepri, N. Oliver, E. Letouzé, A. Pentland, and P. Vinck.
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